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Abstract
Based on the generalized molecular crystal model (GMCM) and theoretical percolation
arguments we investigate small polaron hopping transport in 1D disordered systems at high
temperatures. Correlation (cr) effects are taken into account. An analytical expression for the
temperature dependence of the electrical conductivity, ln σ h,cr ∼ T −1/2, is obtained. This result
reproduces satisfactorily the experimental data reported for λ-DNA and for poly(dA)–poly(dT)
DNA, considering DNA as a one-dimensional disordered molecular wire in which small
polarons are the charge carriers. ln σ h,cr versus T −1/2 plots permit the evaluation of the
maximum hopping distance. The results indicate that correlation effects are probably
responsible for large hopping distances in DNA samples.

1. Introduction

In recent years one-dimensional (1D) conductors, carbon
nanotubes, nanowires and conducting molecules have been
considered to be the most promising materials for nanotech-
nology. As a consequence of this an increasing amount of
experimental and theoretical research has been devoted to their
electrical properties. Knowledge of the nature of the carriers
and the transport mechanism responsible for the measured
electrical conductivity, will enable researchers to use these
materials for innovative applications and the refinement of
many others. When an electron or a hole is injected into a
deformable medium it is possible to introduce local distortions
of the structure as the latter adjusts to the excess charge and
lowers the system’s energy [1–3]; in other words a polaronic
distortion is expected to be formed. The transport behavior
of a polaronic carrier differs significantly from that of a free
electron and has to be treated accordingly. On the other
hand, the presence of disorder may severely affect the transport
mechanism, while external stimuli, such as finite electric fields,
play a distinctive role as well. Moreover, high temperatures
should be studied for practical reasons. Since all the factors
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referred to above could be present in 1D systems of great
physical and technological interest [4–9], their inclusion in a
systematic theoretical investigation of the electrical behavior
of 1D systems is essential.

Recently, Triberis et al [10, 11] investigated the phonon-
assisted hopping transport of small polarons across a 1D
disordered system. The microscopic transport mechanism was
treated within the framework of the generalized molecular
crystal model [12] and the Kubo formula [13]. The
macroscopic behavior of the electrical conductivity, σ , as a
function of the temperature was investigated using percolation
theory arguments. Correlation effects, in a sequence of
successive hops of the carriers, were ignored. The temperature
dependence of the electrical conductivity at high temperatures
(multi-phonon-assisted hopping) was found to follow a
ln σ h ∼ T −2/3 law, while at low temperatures (few-phonon-
assisted hopping) a ln σ h ∼ T −1/2 law was obtained. They
applied their theoretical result for the electrical conductivity at
high temperatures to recent experimental findings, according
to which strong T -dependence was observed in different DNA
samples [14, 15]. It was concluded that multi-phonon-assisted
small polaron hopping between next nearest neighbors could
be the transport mechanism responsible for this behavior.
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From percolation analysis we know that when a carrier
hops from one site to another, in the presence of disorder,
to ignore the correlations, although it is a plausible first
approximation, it is not a realistic one [16]. Triberis [17] and
Triberis and Friedman [18] showed the consequences of the
inclusion of correlations in small polaron hopping transport in
3D disordered materials.

As far as the T -dependence of the electrical conductivity
of DNA is concerned, new experimental data (Inomata et al
[19]) confirmed the behavior reported by Tran et al [14] and
Yoo et al [15]. Moreover, during the last decade it has become
evident that electrons and electron holes migrate through DNA
over long distances [20–22].

The above factors motivated the present work, which has a
twofold objective: (i) the derivation of an analytical expression
for the temperature dependence of the small polaron hopping
electrical conductivity of 1D disordered systems, including
correlations and (ii) applying our theoretical approach to DNA,
the investigation of whether correlation effects could affect the
charge transport process across DNA and justify the possibility
of long-range charge migration.

2. Theory

2.1. The model

We consider a 1D deformable ‘wire’ consisting of ‘molecular
lattice sites’ across which small polarons are transported in the
presence of disorder. We assume that the disorder imposed
upon a carrier residing on a ‘molecular lattice site’ is energetic.
Structural disorder, coming, for example, from a random
sequence across the ‘wire’ of different ‘molecular lattice sites’
is not taken into account. By εi(0), and ε j (0) we denote the
energies of an electron on site at vector positions ri and r j ,
respectively, if the ‘molecular lattice sites’ are constrained not
to be displaced in response to the presence of the electron.
Due to the disorder these local electronic energies, εi (0), and
ε j (0) are not equal. The energetic non-equivalence of the
two sites will affect the small polaron’s binding energy, Eb(i),
in the sense that, the lower the local electronic energy the
more localized the electronic wavefunction will tend to be and
consequently the larger will be its binding energy. Assuming
that the stiffness of the ‘molecular lattice’ is unaltered, the
difference in binding energy means a difference in the electron-
lattice interaction parameters Ai and A j i.e. Ei (xi) = εi (0) −
Ai xi and E j(x j) = ε j (0) − A j x j with Ai �= A j . Here,
Ei(xi) is the electronic energy of the system of the electron
and the isolated molecule with configurational coordinate xi ,
which represents the deviation of the atoms of the molecule at
position ri from their equilibrium configuration i.e. the local
vibrational displacement coordinate.

For the GMCM the free-field basic equation of motion
reads:

ih̄
∂

∂ t
[α(ri , . . . qk . . . ; t)] =

∑

k

[(
− h̄2

2M

∂2

∂q2
k

+ 1

2
Mω2

kq2
k

)

−
(

2

N

)1/2

Ai qk sin

(
k · ri + 1

4
π

)
+ εi (0)

]

× α(ri , . . . qk . . . ; t) − J
∑

h

αri +h. (1)

In this equation, the α(ri , . . . qk . . . ; t) are the amplitudes
of the total wavefunction of the system in a tightbinding
expansion of the form

	(r, . . . xi . . . ; t) =
∑

i

α(ri , . . . qk . . . ; t)
(r − ri , xi )

(2)
in which the 
 are the set of local electronic wavefunctions
centred at the various lattice sites ri , r is the electronic
coordinate and h indexes the nearest neighbours (ri + h), of
an arbitrary site, ri ; (−)J is the standard electronic overlap
integral of the tight-binding theory assumed to be a constant
for all pairs of nearest-neighbour sites.

The matrix elements of the Hamiltonian of the system are

〈m|H |n〉 = 〈m|H0 + V |n〉 = Ei,{nk}δi jδ{nk},{nk′ } + 〈m|V |n〉,

where |n〉 = |i, {nk}〉 are the eigenstates of H , and H0 is
the zeroth-order (i.e. for electronic overlapp integral of the
tight-binding theory J = 0) Hamiltonian with corresponding
eigenvalues

Ei,{nk} = εi (0) − Eb(i) +
∑

k

h̄ωk
(
nk + 1

2

)
. (3)

Here, {nk} represents the totality of the vibrational quantum
numbers (. . . , nk, . . .) for the occupation of the site with
position vector ri , and

Eb(i) = 1

N

∑

k

(A2
i /2Mω2

k), (4)

is the small polaron binding energy. The relation between ωk

and its associated wavevector k, i.e. the dispersion relation, is
given by:

ω2
k = ω2

0 + ω2
1

∑

k

cos(k · h), (5)

where |k| = 2πp/N , the integer p lying in the range −(N −
1)/2 � p � (N − 1)/2, N being the number of lattice sites.

The 〈m|V |n〉 term for the GMCM is the overlap part of
the Hamiltonian with matrix elements given by

〈m|V |n〉 = 〈r j , {n′
k}|V |ri , {nk}〉

= −J
∑

h

δri ,ri +h

∏
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+ A2

ri
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− 2Ari Ari +h
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2k · (ri + 1

2 h))
]}

δn′
k,nk

±
(

4

N

)1/2
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nk + 1
2 ± 1

2
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21/2M1/2ωk (h̄ωk)
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4π
]
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′
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]
. (6)

Here λ = ∓1 according to whether k · h is positive or
negative, respectively, and r j = ri + h.
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Equations (3) and (4) show the essential features of the
GMCM which are:

(1) site-dependent local electronic energy εi (0).
(2) Site-dependent electron-lattice interaction parameter, Ai ,

and concomitant binding energy, Eb(i).

The knowledge of 〈m|V |n〉, permits the evaluation of the
‘microscopic’ small polaron velocity operator [23, 24],

ui j = 〈m|u|n〉 =
(

i

h̄

)
〈m|V |n〉(r j − ri ), (7)

the charge current density operator,

ji j = ncqui j, (8)

where nc is the charge carrier concentration, and q is
the carrier’s charge, and thus the ‘microscopic’ electrical
conductivity [13],

σi j =
∫ ∞

0
dt
∫ β

0
dρ〈 j (−i h̄ρ) j (t)〉, (9)

where β = 1/kBT and kB is the Boltzmann’s constant. Further
calculations allow the knowledge of the mobility, μi j ,the
diffusion constant, given by Di j = μi j/eβ , and consequently
the ‘microscopic’ jump rate which reads:

Li j = Di j

|ri − r j |2 . (10)

Assuming that the dependence on the spatial separation Ri j of
the two sites is exp(−2αRi j ) [25], α−1 being the spatial extent
of the electronic wavefunction localized at a single site, the
‘microscopic’ intrinsic transition rate, γi j , for a small polaron
hopping from a site i to an empty site j is given by

γi j = exp(−2αRi j)Li j . (11)

Knowing the intrinsic transition rate, we obtain the average
equilibrium transition probability [12], W 0

i j :

W 0
i j = (W 0

i j W
0
j i)

1/2 = [n0
i (1−n0

i )]1/2[n0
j (1−n0

j)]1/2(γi jγ j i)
1/2,

(12)
where n0

i is the equilibrium occupation probability of the ith
site.

2.2. Percolation treatment

According to percolation theory [25] the study of the motion
of an electron in a disordered system between localized states,
which are randomly distributed in energy and position, is
equivalent to the study of the possibility of the passage of
electric current through a network of impedances, Zi j , which
connect the different lattice sites, i and j , given by

Zi j = [(q2/kBT )(W 0
i j )]−1. (13)

Here q is the carrier’s charge.

At high temperatures the average equilibrium transition
probability Wi j

0 is given by [10]

W 0h
i j = γ h

0 exp(−2αRi j ) exp[−(|Ei | + |E j | + 2ε2)/2kBT ].
(14)

Here, γ h
0 = (J 2/h̄)(π/4ε2kBT )1/2, ε2 = [Eb(i) + Eb( j)]/4

and Ei = εi (0) − Eb(i) is the electronic energy when the
electron resides on site i . Assuming, as shown in [12], that
the electronic energy is mainly polaronic, i.e. |Ei | 	 Eb(i),
|E j | 	 Eb( j), hereafter we shall refer to the binding energy
as the site energy, and we shall use the symbol Ei instead of
Eb(i) for convenience.

Thus, the impedances Zi j are given by

Z h
i j = Z h

0 exp(ξh
i j), (15)

where
ξh

i j = 2αRi j + (Ei + E j )/k ′
BT, (16)

Z h
0 = kBT/q2γ h

0 and k ′
B = 4

3 kB.
Because of the exponential dependence of Zi j on Ri j , Ei

and E j , the individual impedances change by many orders
of magnitude. Therefore, the overall electrical conductivity
σ h = (Zh)−1 of the connected network of impedances will
be determined by a critical percolation impedance Z h

c , defined
as the largest value of the impedance such that the subset of the
impedances with Z h

i j < Z h
c still contains a connected network

which spans the entire system.
The random network can be considered as composed of

three parts:

(i) A set of isolated ‘regions’ of low impedances, each
region consisting of a group of sites linked together by
impedances with Z h

i j 
 Z h
c .

(ii) A relatively small number of impedances with Z h
i j of

order Z h
c , which connect together a subset of the low

impedance clusters to form an infinite network which
spans the system. The set of impedances in categories (i)
and (ii) form the so-called ‘critical subnetwork’.

(iii) The remaining impedances with Z h
i j � Z h

c .

It is clear that the impedances of order Z h
c determine the

impedance of the network. The impedances in category (i)
could all be set equal to zero without greatly affecting the total
impedance—the impedance of the system would still be finite
because the current has to pass through impedances of order
Z h

c to get from one end of the system to the other. On the
other hand the impedances with Z h

i j � Z h
c make a negligible

contribution to the total impedance because they are effectively
shorted out by the critical subnetwork of impedances with
Z h

i j � Z h
c .

The inverse quantity (Z h
c )−1 characterizes the macroscop-

ically observed conductivity of the material.
Due to equations (15) and (16), the condition for

percolation reads
ξh

i j � ξh
c (17)

or equivalently

Ri j

r h
m

+ Ei

Eh
m

+ E j

Eh
m

� 1, (18)
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where rh
m = ξh

c α−1/2 is the maximum hopping distance and
Eh

m = k ′
BT ξh

c is the maximum site energy.
The conductivity of the specimen is expressed as

σ h = σ h
0 exp(−ξh

c ), (19)

where σ h
0 = (Zh

0 )−1.
From percolation analysis we know that when the site

energies are not the same, the energy of the site affects
the incoming as well as the outgoing impedances, and this
correlates the neighboring Zs. Thus, lack of correlation
between successive impedances in a sequence of successive
hops, although it is a plausible first approximation, is not
realistic. Consequently, we have to take into account the
correlations between impedances coming from the common
site.

This new condition imposed on the transport process
introduces a different physical mechanism for the transport
of the carriers along the chain, and it is expected, as in the
case of three-dimensional disordered materials [12, 26] to
affect the expression of the temperature dependence of the
conductivity that is finally obtained, i.e. a different exponential
T -dependence from the σ ∼ exp T −2/3 [10, 11].

The percolation analysis, previously reported ignoring
correlations [10, 11], was referred to P(Zc) alone as the
relevant average number of impedances of magnitude Zc or
less connected to a given site. Including correlations, for a
random distribution of sites, we have to evaluate the average
number of sites accessible by a bond from a given site of
energy Ei , i.e. P(Z cr

c |Ei), for all possible configurations of
sites which satisfy the percolation condition, and then average
it with respect to Ei .

P(Z cr
c |Ei) is given by Pollak [16] as

P(Z cr
c |Ei) =

∫ Z cr
c

Z=0
p(E j |Ei)p(Ri j) dRi j dE j . (20)

Here, p(|) stands for conditional distribution. In other words
p(Z cr

c |Ei) is the average number of impedances, Z cr
c or less,

connected to a site of energy Ei .
For a random distribution of sites, in one dimension,

p(Ri j) = Ns, Ns being the concentration of sites. The
distribution p(E j |Ei) is obtained from the definition of E j

from the percolation condition for all possible configurations
of pairs. Then, p(Z cr

c |Ei) is given by

P(Z cr
c |Ei) =

∑

m

∫ ∫ (
N(E j )

Ns

)
Ns dRi j dE j (21)

where m extends over all possible configurations of sites and
the limits of integrations, for the temperature range of interest,
can be specified from the corresponding percolation condition.
N(E j ) is the density of states for the j site. For simplicity
we assume that we have a band of localized states above the
Fermi level. Then the possible configurations of sites are (I)
Eh

m > Ei > E j and (II) Eh
m > E j > Ei > 0, where

EF ≡ 0. The integration of the right-hand side of equation (21)
extends over surfaces of constant Z in the Ei , E j and Ri j space.
Specifically the integration extends over surfaces defined by

Ri j

r h,cr
m

+ Ei

Eh
m

+ E j

Eh
m

= 1. (22)

Thus,

P(Z cr
c |Ei) =

∫ E ′

0

(
N(E j )

Ns

)
dE j

(∫ R′

0
Ns dR′

)

+
∫ E ′

E

(
N(E j )

Ns

)
dE j

(∫ R′

0
Ns dR′

)
(23)

where each term of the right-hand side of equation (23)
corresponds to the particular configuration of sites. Here,

R′ ≡ (rh,cr
m /Eh

m)(Eh
m − Ei − E j), E ′ ≡ Eh

m − Ei . (24)

Assuming N(Ei ) = N(Ei ) = N0 = const over the energy
range of interest, and taking the disordered energy as mainly
polaronic [12], from equation (23) we obtain

P(Z cr
c |Ei) = N0

2
(rh,cr

m /Eh
m)[(Eh

m−Ei )
2+(Eh

m−2Ei)
2]. (25)

Here we have to notice that the particular choice of the
form of the density of states (DOS) affects our results. To
our knowledge, an analytical expression showing the energy
dependence of the DOS for DNA has not been presented in
the literature yet, although for certain configurations a number
of calculations have been presented [27–29]. In our study
we have taken the DOS to be constant over the energy Em,
a usual approximation used in studies of amorphous three-
dimensional materials [25, 12]. Earlier studies on disordered
systems have been reported on the effect of the model DOS
on the behavior of the DC conductivity in the case of small
polaron hopping [16, 30, 31].

In order to average P(Z cr
c |Ei) with respect to Ei we

have to consider the probability that states with energy Ei are
connected to the critical path. The probability can be shown to
be proportional to P(Z cr

c |Ei)N(Ei ) [16]. Thus we obtain the
percolation condition

P̄(Z cr
c ) =

∫ Eh
m

0 P2(Z cr
c |Ei)N(Ei ) dEi

∫ Eh
m

0 P(Z cr
c |Ei)N(Ei ) dEi

= θ (26)

where for θ we use the value θ 	 2 [32]. Performing the
integrations in equation (26) we obtain

P̄(Z cr
c ) = N0

2
(rh,cr

m /Eh
m)(Eh

m)2 ∼= 2 (27)

from which
ξh,cr

c = (T h,cr
0 /T )1/2. (28)

Here, T h,cr
0 = 6/N0kBα−1. Thus, the conductivity of the high

temperature multi-phonon-assisted small polaron hopping one-
dimensional regime, including correlations, is given by

σ h,cr = σ
h,cr
0 exp

⎡

⎣−
(

T h,cr
0

T

)1/2
⎤

⎦ . (29)

For a given temperature, equation (29) is expressed as:

σ h,cr = σ
h,cr
0 exp(−2rh,cr

m /α−1), (30)

4
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where

rh,cr
m = (T h,cr

0 )1/2α−1

2
T −1/2 (31)

i.e. the maximum hopping distance follows a T −1/2 law.
Equation (29) allows the evaluation of T h,cr

0 from the slope of
the fits of the experimental data reported for DNA samples,
plotted as ln σ h-versus-T −1/2. Knowledge of T h,cr

0 using
equation (31) permits the evaluation of the maximum small
polaron hopping distance at the temperature of interest.

Here we note that, for 3D disordered systems and
uncorrelated hopping transport, Triberis and Friedman [12],
based on percolation arguments, reported that a T −ε/(ε+r)

law governs the T -dependence of the small polaron hopping
conductivity. Here, ε is the dimensions (number) of the
energy and r the spatial dimensions involved in the percolation
condition. At high temperatures, where ε = 2 and r =
3, a T −2/5 law was obtained, while at low temperatures,
where ε = 1 and r = 3, the corresponding law is T −1/4.
However, for the case of correlated hopping, at low as well
as at high temperatures, a T −1/4 law was obtained for 3D
materials [17, 18]. For the case of longitudinal conduction at
low temperatures in thin films (ε = 1 and r = 2) a T −1/3 law
was obtained [16]. The above have been widely applied to a
variety of amorphous materials. A brief review is presented
in [33].

For the 1D case, the expression of the T -dependence
of the small polaron hopping conductivity derived at high
temperatures and uncorrelated hopping, i.e. the T −2/3 law
[10, 11], as well as the T −1/2 law [10, 11] for the low-T case,
are consistent with the above predictions. Taking into account
correlations, the T −1/2 law obtained in our present treatment is,
as expected, also consistent with the corresponding 3D case.

3. Small polaron correlated hopping transport:
a possible transport mechanism in DNA

The general expression for the electrical conductivity produced
in section 2 is applicable to any 1D deformable disordered
system in which small polarons are the charge carriers
responsible for the observed conductivity. DNA is a potential
candidate, for the following reasons:
(i) Formation of small polarons. Many theoretical studies
support the idea of the formation of polarons in DNA [6–8] and
polaron hopping transport as the mechanism responsible for
the observed conductivity [34, 9, 35, 36]. Alexandre et al [37]
reported ab initio calculations for poly(dC)–poly(dG) DNA,
with up to four C–G pairs. They found a strong hole–lattice
coupling and clear evidence for formation of small polarons
and estimated the activation energy for polaron hopping and
the polaron binding energies.

As Conwell points out [9] two kinds of polarons can be
formed in DNA. The so-called ‘distortion’ polaron, where
the distortion of the ‘molecular’ lattice site results in the
self-trapping of the carrier and the formation of the small
polaron, and the ‘solvated’ polaron [38, 39], which differs from
‘distortion’ polaron because its formation is due to polarization
by the excess charge of the medium surrounding the DNA,
water and ions.

In the application of our theory the polarons considered
are of the first kind. For this reason we use experimental data
reported for dry samples.
(ii) Presence of disorder. Tran et al [14] emphasized that
the models proposed for the interpretation of the electrical
conductivity data did not take into account the disorder
associated with the random base sequences, and also the
random potentials along the DNA double helix arising from
the randomly positioned counterions. The influence of
counterion-induced disorder in DNA conduction has been
recently investigated by Adessi and Anantram [40]. In DNA
disorder is imposed upon the carrier from the nucleobases
system, the backbone system and the environment.

According to the GMCM, all the contributions to disorder,
excluding the disorder induced by the formation of the
polaron, are embodied in the local electronic energy, εi (0).
As we discussed, in the model the site dependent local
electronic energy results in site dependent binding (polaronic)
energies. We assume, as shown in [12], that the electronic
energy is mainly polaronic, i.e. the induced disorder due to
the randomness of binding energies is predominant. The
implications of this assumption will be discussed in section 4.

Here we have to note that the generalized molecular
crystal model upon which the study of the small polaron
hopping conductivity is based was first introduced for the
interpretation of the behavior of the conductivity of amorphous
materials. There, the concept of ‘disorder’ due to randomly
distributed lattice sites or the possible existence of voids etc
can be much more easily understood than in the DNA-case.

In DNA we have the basic DNA double helix sequence
formed by the specific base pairs (‘lattice sites’) sequence,
correlated with the position of phosphates that essentially
determine the symmetry of the DNA structure and other
environmental factors, e.g. the presence of counterions. As
it has been pointed out [41], the sequence dependent DNA
conformation (the actual twisting, stretching and bending of
the double helix) may not only reflect the tendency of the
base pairs to stack at distances and angles dependent on
their identity but may also depend on interactions with other
molecules or other environmental factors, e.g. cations in the
crystallization buffer. Analysis of how the DNA conformation
depends on the nucleotide sequence is complicated by
variations in the stacking geometry of the base pairs at
each specific step with the surrounding sequence. All the
above introduce an accumulating disorder under which the
small polaron follows a directional walk of successive hops
of random length (the random resistance network in our
percolation approach).

According to [42, 43] a ‘long-range order model’ for the
description of the DNA chain does not seem to be physically
appropriate for DNA, while a much more realistic model could
be a ‘short-range order model’ in which the mismatches in
positions of charges accumulate along the lattice. This model
incorporates the sequence specificity of the DNA structure.
(iii) Although the wavefunction of the carrier may be more
concentrated at one member of the pair, depending on the
ionization energy, e.g. G in G–C, there is good evidence for
wavefunction overlap in the pair; it is well documented that

5
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a carrier residing in the pair easily makes a transition to the
other [44, 45]. However, if a carrier is located on one strand, it
is likely that the transfer will take place on this strand. The
actual case depends on the kinds of bases that are included
in the sequence. Calculations for the two cases do not lead
to very different properties for the polaron [9]. Under these
conditions, we believe that our model could be applied whether
the transport occurs along one strand or a double helix.

The electrical properties of the DNA and the physical
mechanisms behind them are still an open problem and
the controversial experimental findings are indicative of
this fact. Some reports show insulating characteristics,
others semiconducting and even metallic properties have been
attributed to DNA. The diversity of the research results on the
electrical properties of DNA molecules can be attributed to a
variety of factors [46]. Some concerns for the contradicting
experimental results are:
Different DNA samples. Variations in length and states of DNA
affect the measured conductivity. As expected, the longer the
DNA molecules are, the less conductive they appear, while the
conductivity of DNA molecules in wet states is greater than
in dry states. Also, molecules with different base sequence are
characterized by different bends and distortions along the DNA
double helix. The variation of the DNA sequence amongst the
DNA samples directly affects the charge carriers and hence
the conductivity measurements. Usually, positive charge is
more stable on a G–C base pair than on an A–T pair due
to the different number of hydrogen bonds that connect the
complementary bases; there are triple hydrogen bonds in the
G–C pairs, but double hydrogen bonds in the A–T pairs.
The energy difference between these two pairs is substantially
larger than the thermal energy of the charge carrier. So, A–T
base pairs may act as a barrier to the transfer. However, the
carrier can tunnel in a coherent fashion from the first G–C site
to the second, and can then either hop back to the first G–C
pair or move on to the next one. Eventually, the number and
sequence of base pairs lead to various experimental results.
Variations of sample treatment in different buffer solutions
and different experimental environments. Solutions may
help the electron transport or the solution itself may be
conductive. For instance, DNA in a buffer is in a
water-rich environment and different water contents lead
to different DNA modifications and different amounts of
disorder along the double helix. Consequently, this may
lead to a more/less effective charge localization, and thus
smaller/greater conductivity. Temperature and humidity
may also affect the electrical properties of DNA. It has
been shown that DNA electrical conductivity is strongly
dependent around room temperature with a crossover
to a weakly temperature dependent conductivity at low
temperatures [14, 19, 15, 47]. The electrical properties of DNA
are also humidity dependent [48]. In aqueous solutions, the
phosphates of the double helix face towards water and this
stabilizes the double strand. Humidity changes also affect the
electrical conductivity of DNA. As reported [48], the resistance
of poly(dG)–poly(dC) decreases dramatically with increasing
relative humidity. In particular, resistance decreases from
109 � at 30% relative humidity to about 106 � at 90% relative

humidity. Therefore, ionic conduction was found to dominate
under atmospheric conditions.
Quality of electrical contacts in different experiments. The
contact resistance between the electrode and DNA affects
the total conductivity of the DNA–electrode system [48].
Measurements of the electrical properties of DNA can be
either contactless microwave measurements or direct contact
measurements. In the direct contact measurements it is
very difficult to ensure that the DNA molecule is in direct
contact with the metal electrodes (usually Au). However, even
if contact is attained, the weak physical adhesion between
DNA and Au may produce an insulating contact and possibly
account for the wide variation in reported resistivity [49].
A better approach could achieve direct chemical bonding
between the open ends of DNA and Au [50].

Despite the various factors referred to above which
affect the measured conductivity, recent experimental re-
ports [14, 19, 15, 47] have revealed an impressive common
characteristic in the behavior of the measured conductivity
of different DNA samples: the same strong temperature
dependence of the conductivity at high temperatures. To our
knowledge a consistent interpretation of this behavior has not
been presented in the literature. We believe that our theoretical
analysis could contribute to this.

Tran et al [14] measured the conductivity and its
temperature dependence along the lambda phage DNA (λ-
DNA) double helix. They used a configuration which
does not require contacts to be attached to the specimen
under study and measured the temperature dependence of
the conductivity associated with the DNA double helix at
high frequencies. The conductivity was evaluated from the
loss of highly sensitive resonant cavities operating at 12 and
100 GHz. The technique and the analysis which leads to the
evaluation of the conductivity from the measured losses are
well established [51]. DNA specimens used in their study
were lambda phage DNA (λ-DNA) extracted from Escherichia
coli. In their study DNA strands were treated as thin wires
of diameter 2 nm. The ‘DNA in buffer’ samples were DNA
lyophilized in buffer and the ‘dry DNA’ samples were purified
DNA. The DNA in buffer samples were lyophilized from a
solution in 1 mM Tris-HCl, pH 7.5, 1 mM NaCl, 1 mM EDTA
and 330 g ml−1 DNA. Lyophilization led to 0.5 mg of DNA
in a total weight of 4.9 mg. Approximately 80% of the DNA
was of full length and approximately 20% was shared, shorter
segments. Purification in the dry DNA samples was performed
according to standard processes. Approximately 85% of the
total weight was associated with DNA, and the remaining 15%
was due to water and residual counterions.

Tran et al’s [14] low temperature data were attributed to
ionic conduction due to counterions. It was also reported
that such ionic conduction cannot account for the strong
temperature dependence and the large conductivity they
observed at high temperatures—this was attributed to carrier
excitations across single particle gaps or temperature driven
hopping transport processes. Alternatively, they noticed that
the observed behavior would occur when phonon-assisted
polaron hopping is the actual transport mechanism.

We consider the experimental data of Tran et al [14] (I)
for dry λ-DNA at 12 GHz. A pronounced strong temperature
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dependent conductivity was observed from 227 to 342 K,
i.e. in a 115 K-wide, temperature region. The corresponding
values of the conductivity varied from 0.28 �−1 cm−1 up to
4.29 �−1 cm−1, respectively.

More recently Inomata et al [19] measured the electrical
current–voltage characteristics of λ-DNA in a vacuum
using fine electrodes. The temperature dependence of the
conductivity of λ-DNA was indicative of thermally activated
hopping behavior and was explained by the Arrhenius
equation. In their experiments each λ-DNA molecule had
48 502 base pairs corresponding to a length of 16.5 μm. They
diluted the λ-DNA solution with a TE buffer solution (10 mM
Tris-HCl and 1 mM EDTA in distilled water, pH 8.0) of
the same composition to a concentration of 35 μg ml−1. A
droplet of dilute DNA solution was deposited onto the substrate
followed by the removal of the solvent by suction using a
syringe. λ-DNA molecules were extended on the substrate
as the air–water interface receded. The I –V measurements of
these samples were performed in a vacuum.

The experimental data of Inomata et al [19] (II) for
λ-DNA showed pronounced strong temperature dependent
conductance from 118 to 265 K, i.e. in a 147 K-wide
temperature region. The corresponding values of the
conductance varied from 0.86 × 10−11 �−1 up to 1.46 ×
10−7 �−1, respectively. Their experimental data showed
similar temperature dependence to that reported by Tran et al
[14].

Yoo et al [15] reported measurements of electrical
transport through poly(dA)–poly(dT) and poly(dG)–poly(dC)
DNA molecules containing identical pairs. Their measured
I –V characteristics at various temperatures were interpreted
using a small polaron hopping model [52]. For the poly(dA)–
poly(dT) regime they estimated the hopping distance to
be about 1.68 nm (5 base pairs) at 300 K, while for
poly(dG)–poly(dC) they found it to be 2.5 nm (7 base pairs),
independently of the temperature for T > 50 K. Their effort
to interpret the temperature dependence of the conductivity
observed by Tran et al [14], using the same polaron hopping
model over the whole temperature range, was not very
convincing and therefore they did not exclude other possible
mechanisms.

The specimens used in their experiments were poly(dG)–
poly(dC) and poly(dA)–poly(dT). The average length of
poly(dG)–poly(dC) was about 1.7–2.9 μm (5000–8600 base
pairs) and that of poly(dA)–poly(dT) was about 500–
1500 nm. Electrical contacts between DNA molecules and
metal electrodes were made using the electrostatic trapping
method. A drop of DNA aqueous solution was positioned on
top of the gap between the electrodes, and after trapping, the
molecule between the electrodes the sample was dried.

Considering the experimental data of Yoo et al [15]
(III) for poly(dA)–poly(dT) DNA, a strongly temperature
dependent conductivity was also observed from 178 to 306 K,
i.e. in a 128 K-wide temperature region. The corresponding
values of the conductance varied from 3.31 × 10−11 �−1 up to
1.5 × 10−8 �−1, respectively.

Kutnjak et al [47] also reported measurements of
temperature dependent electrical conductivity obtained on

native wet-spun calf thymus Li-DNA in a dc measuring field.
Wet-spun oriented samples were prepared from calf thymus
Li-DNA with a molecular weight of 107 (corresponding to a
contour length of about 5 mm, or some 102 persistence lengths
of 50 nm) by wet spinning and then drying. The wet spinning
method allows for controlled production of sufficient amounts
of highly microscopically oriented thin films by spooling DNA
fibers that are continuously stretched during precipitation into
an aqueous alcohol solution. The dried Li-DNA sheets of
thickness about 3–4 mm and surface area between 10 and
20 mm2 were then cut perpendicularly to the orientational axis
of the DNA molecules into bulk samples of 6.4×4.4×3.4 mm3

that were used in conductivity measurements. Electrodes were
pressed on both sides of the sample. Quasistatic resistivity and
I –V curve measurements were performed with a Keithley 617
programmable electrometer on samples kept in 75% relative
humidity and on samples dried in a vacuum. They concluded
that their measurements could be rather well described by the
activated Arrhenius law, but based on the quality of the fits
they did not exclude hopping. A strong temperature dependent
conductivity was also observed, from 260 to 300 K, i.e. in a
40 K-wide temperature region.

As pointed out by one of the authors in a previous
publication on DNA [10], the experimental values of the
measured conductivity vary by many orders of magnitude
within different temperature ranges, more or less wide. In
section 4 we apply our theoretical approach to the data which
are related to the wider ‘high temperature’ regions (I, II and
III) in order to maximize the credibility of the fits. The
data of Kutnjak et al [47] are excluded because they are
referred to a very narrow temperature region about 40 K
wide. By ‘high temperature’ regions we characterize those
in which the measured conductivity shows a pronounced
strong dependence, although this is strictly determined by the
condition h̄ω0 � kBT [24]. The low temperature region is
characterized by a very weak temperature dependence of the
conductivity.

4. Results and discussion

Figures 1, 2 and 3 show the ln σ versus T −1/2 plots for these
data, namely Tran et al’s (12 GHz) data (I) [14], Inomata
et al’s data (II) [19] and Yoo et al’s (poly(dA)–poly(dT))
data (III) [15], respectively. The experimental data nicely
follow the T −1/2 law. Given that the strong temperature
dependence of the measured conductivity can be equally
nicely fitted using different exponential laws, as has been
attempted in the past [14, 15], the quality of the fits does not
necessarily guarantee the validity of our theoretical approach.
However, our theoretical analysis allows the evaluation of
rh,cr

m (T ). The maximum hopping distance, rh,cr
m (T ), and its T -

dependence is analytically derived taking into account basic
characteristics of the system under study, i.e. disorder, the
polaronic character of the carriers and correlation effects. This
makes the maximum hopping distance an important quantity
for testing the reliability of our theory.

The value of T h,cr
0 is determined from the slope of the

ln σ versus T −1/2 curves (equation (29)). Using equation (31)

7



J. Phys.: Condens. Matter 21 (2009) 035114 G P Triberis and M Dimakogianni

Figure 1. ln σ versus T −1/2 plot of Tran et al’s (12 GHz) data [14]
for λ-DNA.

Figure 2. ln G versus T −1/2 plot of Inomata et al’s data [19] for
λ-DNA.

(for α−1 = 2 Å [53, 54]) we evaluate the maximum hopping
distance, rh,cr

m (T ), at the lower and higher temperatures of the
‘high temperature’ region.

For λ-DNA using Tran et al’s [14] data (I), we obtain
T h,cr

0 (I) = 59 × 103 K, rh,cr
m (I)(227 K) = 16.14 Å (five base

pairs), and rh,cr
m (I)(342 K) = 13.15 Å (four base pairs).

Respectively, for λ-DNA using Inomata et al’s [19] data
(II), we obtain T h,cr

0 (II) = 12.19 × 104 K, rh,cr
m (II)(118 K) =

32.13 Å (nine base pairs), and rh,cr
m (II)(265 K) = 21.44 Å

(six base pairs). The values for rh,cr
m obtained for λ-DNA for

both experiments are mutually consistent given the temperature
values in which the experiments were performed.

For Yoo et al’s [15] data (III), we obtain T h,cr
0 (III) =

11.8 × 104 K, rh,cr
m (III)(178 K) = 25.76 Å (eight base pairs),

and rh,cr
m (III)(306 K) = 19.65 Å (six base pairs).

Table 1 shows the maximum hopping distance for both
cases, i.e. for uncorrelated [10] and for correlated hopping at
the lower and higher temperatures of the ‘high temperature’
region. The maximum hopping distance for Inomata et al’s
data has also calculated for the uncorrelated case.

Figure 3. ln G versus T −1/2 plot of Yoo et al’s data [15] for
poly(dA)–poly(dT) DNA.

Table 1. Maximum hopping distance.

Exp. data r h
m r h,cr

m

I (227 K) 11.40 Å (3 bp) (227 K) 16.14 Å (5 bp)
(342 K) 8.70 Å (2 bp) (342 K) 13.15 Å (4 bp)

II (118 K) 25.91 Å (8 bp) (118 K) 32.13 Å (9 bp)
(265 K) 14.81 Å (4 bp) (265 K) 21.44 Å (6 bp)

III (178 K) 18.8 Å (5 bp) (178 K) 25.76 Å (8 bp)
(306 K) 13.00 Å (4 bp) (306 K) 19.65 Å (6 bp)

We notice that the relative magnitude of the maximum
hopping distance, i.e. rh

m(II) > rh
m(III) > rh

m(I), ignoring
correlations, remains the same including correlations, as
expected, for the lower and higher temperatures of the ‘high
temperature’ region, i.e. rh,cr

m (II) > rh,cr
m (III) > rh,cr

m (I).
Our results imply that as the temperature increases, shorter

hops (or equivalently smaller impedances, cf equations (30)
and (31)) contribute to the transport process, resulting in an
increase in conductivity, in accordance with experiment.

Although until recently it was reported [37] that the
hopping of small polarons over large distances across the DNA
double helix is improbable, correlation effects make possible
small polaron hops up to nine base pairs, at least for the
experiments under study.

To our knowledge the only effort to interpret the
experimental data based on a specific expression for the I –
V characteristics [52] has been presented in [15]. This
expression was borrowed from amorphous semiconductor
theory. The lack of an analytical expression based on a
transport mechanism appropriate for the specific system forced
Yoo et al [15] to use the (fitting) parameter b to fit—as
I ∼ bV , the specific expression referred to in [52]—to their
experimental data. According to the authors, the parameter b
has a temperature dependence of unclear physical origin. The
above probably resulted in an unconvincing attempt, as the
authors [15] noticed, to interpret Tran et al’s data [14].

On the other hand the use of a simple Arrhenius-type
formula by other workers to fit their experimental data seemed
to be inadequate to account for important features of the actual
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transport mechanism, and did not produce any significant
information about the transport process. This is probably
the reason for the lack of a simultaneous interpretation of
the experimental findings [15, 14, 19] which show a similar
behavior of the conductivity in DNA at high temperatures.

The approach presented in the present work is based
on first principles, leading to analytical expressions for the
conductivity as a function of the temperature and the maximum
hopping distance. For this reason it does not need any
adjustable fitting parameter because the responsible transport
mechanism is described in detail. All three experiments are
consistently analyzed.

As we pointed out in section 3, various factors affect the
electrical properties of DNA. Tran et al [14], Inomata et al
[19] and Yoo et al [15] measured the electrical conductivity
of different DNA samples. Their data are for DNA samples
of different length, different base pair sequences and different
experimental settings. These differences do not seem to
affect the qualitative behavior of the conductivity at high
temperatures, which shows a similar strong T -dependence
for all three experiments. We notice that although in these
experiments the conductivity exhibits the same qualitative
pronounced T -dependence, its value differs significantly
for the samples under consideration within the relevant
temperature ranges.

Here we have to note that our theoretical model takes
into account, as we pointed out in section 3, only the
basic characteristics of DNA, which makes it a potential
candidate for application of the theoretical results. These
characteristics, i.e. the small polaronic character of the carriers,
the prevalence of the polaronic character of disorder [12] and
the multi-phonon hopping type transport, could be attributed
to all three DNA samples we deal with. Incorporating
these characteristics in our theoretical analysis we produced
an analytical expression for the temperature dependence of
the conductivity, which seems to reproduce satisfactorily
the experimentally observed qualitative behavior of the
conductivity. The above remarks drive us to assert that the
characteristics referred to in section 3, which are common
for all three experimental samples, prevail over the specific
characteristics of the individual DNA samples under study,
and determine the qualitative behavior of the conductivity. It
seems that the inclusion of the DNA site energies (there are
indeed four types of sites), the specific configuration of bases,
the length of the DNA sequence and other relevant factors
in the theoretical analysis should be taken into account when
we try to reproduce quantitatively the measured values of the
conductivity of any particular DNA samples under study.

Finally, the specific influence of the cations(counterions)
has to be incorporated in a detailed analysis. The DNA
helix is stabilized by positively charged counterions which
prevent the two strands from dissociating under the repulsion
between the concentrated anionic phosphate groups [55].
Recent studies, using a variety of techniques, suggest that
counterions may be more involved in DNA structure, with
specific interaction sites [56, 57]. Indeed, although the
bases are neutral overall, they have electron-rich groups
that can form electronegative pockets potentially suited to

host cations. Although experimental reports suggest that
the type of counterion affects the DNA structure, the
nature of the structural effect remains obscure. Depending
upon the concentration of the cations (counterions), their
valency and the charge of the carrier (electron or hole),
the cation(counterion)–charge interactions could affect the
strength of the charge–‘lattice’ interaction, and, consequently,
the magnitude of the mobility of the carrier.

5. Summary

In summary, we developed a theoretical model for the
temperature dependence of the electrical conductivity when
small polarons are transported in a disordered 1D environment
at high (h) temperatures. Correlation (cr) effects were taken
into account.

The theoretically obtained ln σ h,cr ∼ T −1/2 law
satisfactorily reproduces the strong T -dependence of the
conductivity reported for λ-DNA and for poly(dA)–poly(dT)
DNA at high temperatures. The fits of this theoretical
result with the experimental data permit the evaluation of
the maximum hopping distances. The results indicate that
correlation effects are probably responsible for large hopping
distances in DNA samples.

Thus, correlated multi-phonon-assisted small polaron
hopping across several base pairs of the DNA double helix
could be a probable charge transfer mechanism responsible
for the strong temperature dependence of the electrical
conductivity of DNA measured at high temperatures.

The energetics of the base upon which the small polaron
resides, the particular configuration and the length of the
specific DNA sequences should be taken into account in a
quantitative study of the measured conductivity.
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